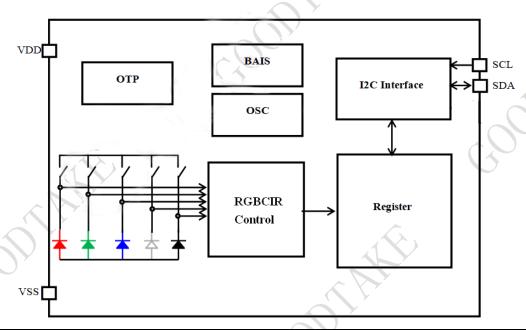
Color Temperature and Ambient Light Sensor

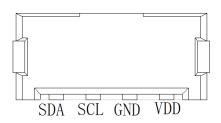
Description

The SDF-DRGB-S2 device will perform color temperature measurement, brightness sensing. An internal state machine provides the ability to put the device into a low power state between color temperature measurement providing very low average power consumption.

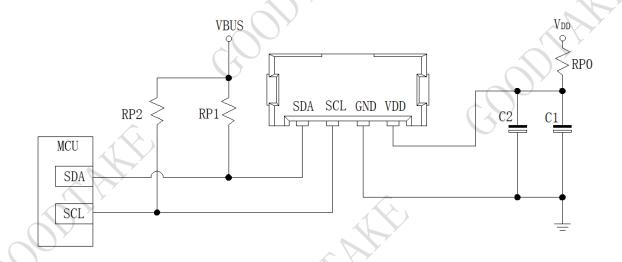

Features

- •Color Temperature and Ambient Light Sensing
 - -Low Power Management
 - -I²C Fast Mode Interface Compatible
 - -16 Bit resolution
 - -IR blocking filters
 - -Programmable Gain & Integration Time
- Power Management
 - -Low Power 1uA Sleep State
- •I²C Interface Compatible
 - -Up to 400kHz (I²C Fast Mode)
 - -Device addr.: 7'b1000_011

Applications


- Brightness Sensing
- •Color Temperature Sensing
- ●Notebook
- Handheld device
- •Industrial and medical application

Function Block Diagram


Rev1.0 8Nov2021

Pin Description

I/O TYPE	PIN NAME	DESCRIPTION
	VDD	Digital/Analog Power Supply
I	SCL	I ² C serial clock line
	GND	Ground
I/O	SDA	I ² C serial data line

Typical Application Circuit

Application Circuit Design

The pull-up resistors RP0 are required, 200Ω resistors can be used.

The capacitors (C1, C2) are required for power supply. The capacitors should be placed as close as possible to the device. The high frequency AC noises can be shunted to the ground by the capacitors. The transient current caused by digital circuit switching also can be handled by the capacitors. A typical value $0.1 / 4.7 \mu F$ can be used.

The pull-up resistors (RP1, RP2) are required for I^2C communication. At fast speed mode (400kHz/s) and VBUS = 3V, $1.5k\Omega$ resistors can be used.

GOODTAKE

Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNIT
VDD	Power Supply Voltage	-0.5	3.6	V
Vin	Input Voltage	-0.5	VDD	V
Vout	Output Voltage	-0.5	VDD	V
Tj	Junction Temperature	-40	85	$^{\circ}$

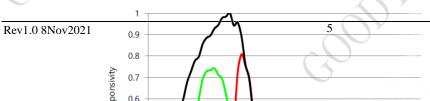
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute- maximum-rated conditions for extended periods may affect device reliability.

Note 1: All voltage values are with respect to VSS.

Recommended Operation Conditions

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
VDD	Power Supply Voltage	2.6	3.3	3.6	V
Vin	Input Voltage	0		VDD	V
Vout	Output Voltage	0		VDD	V
TA	Operating ambient temperature	-30		70	$^{\circ}$

Electrical Characteristics (VDD = 3.3V, Ta = 25°C)


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Active		300	350	
Supply Current	Sleep (@ADDR high)	y	1	10	uA
	Sleep (@ADDR low)		16	25	uA
SDA outputlow voltage	3mA sinkcurrent 6mA sink current	0		0.4 0.6	V
LowLevel Input Voltage				0.6	V
HighLevel Input Voltage		VDD*0.7	<u> </u>		V

Data Transmission Timing Requirements

PARAMETER	CONDITIONS	MIN	MAX	UNIT
Output Low Level (SDA)	IOL = 4mA		0.5	V
SCL Operating Frequency			400	kHz
Stop and Start Condition		1.3		us
Hold Time After Repeated Start Conditions		0.6	9	us
SCL Clock Low Period		1.3		us
SCL Clock High Period		0.6		us
Repeated Start Condition Setup Time		0.6		us
Data Hold Time		0	0.9	us
Data Setup Time		100		ns
Clock/Data Fall Time			300	ns
Clock/Data Rise Time			300	ns
Stop Condition Setup Time		0.6		us

PARAM	ETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	R			630		nm
	G			550		nm
Peak_ Sensitivity Wavelength of ADC	В			480		nm
	C			590		nm
	IR			870		nm
	R			3730		counts
	G	3		8635		counts
Counter Value of ADC	В	5700K WLED, 1000Lux,Integration Time 10ms, AGAIN=1		7545		counts
of ADC	С	Tollis, AGAIN=1		15830		counts
	IR			50		counts
Dark Count Value		Dark,Integration Time 100ms, AGAIN=1	0	3	6	counts
ADC count Range			0		65,535	counts
		AGAIN = 0		1		
	/	AGAIN = 1	1	1.5		X
Gain sca	aling	AGAIN = 2		2		Λ
		AGAIN = 3	> '	2.5		

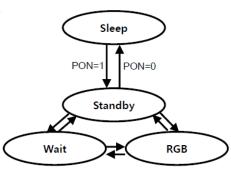
Typical Performance Characteristics

Detailed Description

Overview

The SDF-DRGB-S2 light-to-digital device provides on-chip RGBC and IR diodes, integrating amplifiers, ADCs, accumulators, clocks, buffers, comparators, a state machine and an I²C interface. Four integrating ADCs simultaneously convert the amplified photodiode currents into a digital value providing up to 16 bits of resolution.

The device connects to a video processor or image sensor through a standby I²C interface which supports up to 400-kbits/s data rate. The digital interface supports IO levels from 1.8V to 3.3V.

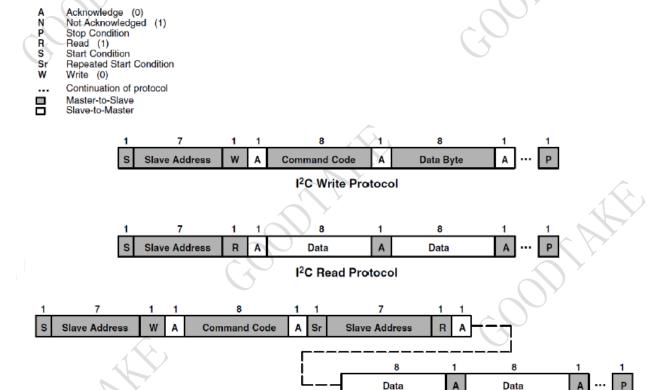

Feature Description

System State machine

The SDF-DRGB-S2 device provides ambient light and color temperature sensing. The internal state machine manages the operation of the device. It controls the RGB functionality and power down modes. Average power consumption is managed via control of variable endurance low power wait cycles. The advanced digital color light sensor portion of the SDF-DRGB-S2 contains a segmented circular photodiode array used for color measurements.

This architecture provides stable color sensing independent of the incident angle of light. Five integrating analog-to-digital converters (ADCs) integrate light energy from photodiodes simultaneously.

Communication with the device is accomplished through a fast (up to 400 kHz) two wire I²C serial bus for easy connection to a microcontroller or embedded controller. The device typically draws only 300uA in color operation and 1uA during power down.



< State machine >

Programming I²C Protocol

Interface and control of the SDF-DRGB-S2 is accomplished through an I²C serial compatible interface (standard or fast mode) to a set of registers that provide access to device control functions and output data. The device supports a selectable I²C address between b1000_011 using 7-bit addressing protocol.

The I²C standard provides for three types of bus transaction: read, write, and a combined protocol. During a write operation, the first byte written is a command byte followed by data. In a combined protocol, the first byte written is the command byte followed by reading a series of bytes. If a read command is issued, the register address from the previous command will be used for data access.

I²C Protocol

GOODTAKE

SDF-DRGB-S2-TT/TR

Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	DEF
0x80		RESERVED		DARK_EN	RESERVED	W_EN	RGB_EN	PON	0x00
0x81	IRGAIN AGA			AIN	W_TIME		RGB_TIME		0x00
0x82				DEVI	CE ID				0x24
0x83		7		REVIS1	ON ID				0x00
0xA0				ADC_	R[7:0]				0x00
0xA1		ADC_R[15:8]							0x00
0xA2				ADC_	G[7:0]				0x00
0xA3				ADC_0	G[15:8]				0x00
0xA4				ADC_	B[7:0]				0x00
0xA5				ADC_I	3[15:8]				0x00
0xA6		ADC_C[7:0]							0x00
0xA7	ADC_C[15:8]								0x00
0xA8	ADC_IR[7:0							1	0x00
0xA9			()	ADC_I	R[15:8]			()	0x00

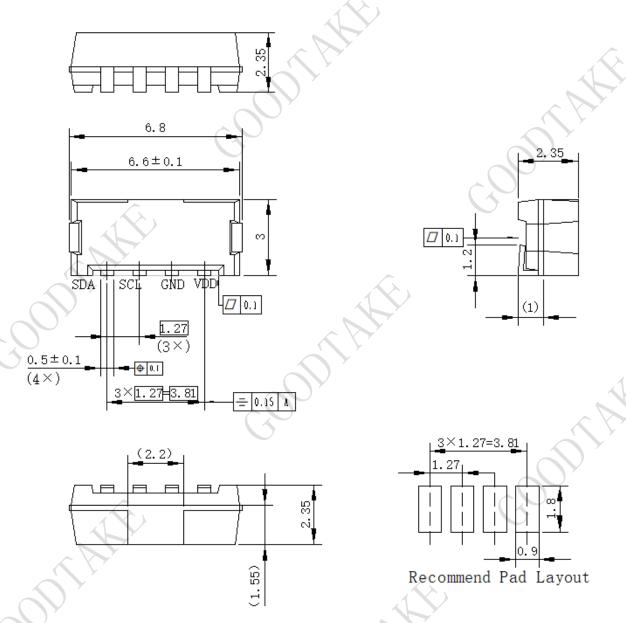
Enable Register

Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	DEF
0x80	~	RESERVED)	DARK_EN	RESERVED	W_EN	RGB_EN	PON	0x00

FIELD	BITS	DESCRIPTION
DARK_EN	4	Dark Offset cancellation Enable.
W_EN	2	Wait State Enable.
RGB_EN	1	RGB, Clear and IR controller Enable.
PON	0	Power ON. This bit activates the internal analog circuit to permit the timers and ADC channels to operate. Writing a 1 activates analog circuit. Writing a 0 disables analog circuit. During reads and writes over the I ² C interface, this bit is temporarily overridden and analog circuit is enabled, independent of the state of PON.

Gain & Time control Register

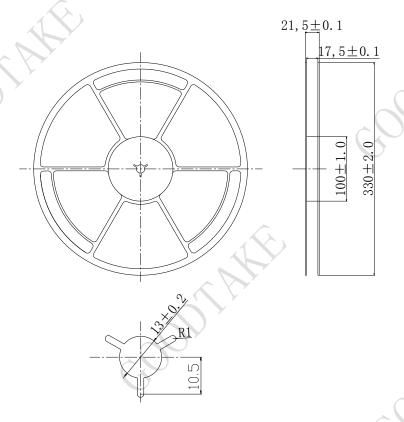
A	ddr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	DEF
0)	x81	IRG	AIN	AG.	AIN	W_TIME		RGB_TIME		0x00

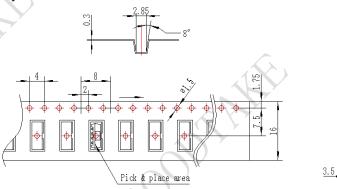

FIELD	BITS	DESCRIPTION	
IRGAIN	[7:6]	IR Gain 0 : 1x, 1: 0.5x, 2: 0.25x, 3: 0.125x	
AGAIN	[5:4]	Analog Gain 0 : 1x, 1: 1.5x, 2: 2x, 3: 2.5x	
W_TIME	3	WAIT Time 0 : 10ms, 1: 100ms	
RGB_TIME	[2:0]	Optical Integration Time 0: 10ms, 1: 20ms, 2: 40ms, 3: 80ms 4: 100ms, 5: 200ms, 6: 400ms, 7: 800ms	

ADC Data

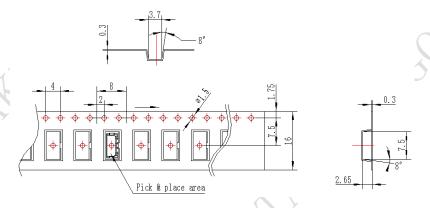
Addr	Bit7 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	DEF	
0x82	DEVICE ID								
0x83	REVISION ID								
0xA0	,		ADC_	_R[7:0]				0x00	
0xA1			ADC_	R[15:8]	,			0x00	
0xA2			ADC_	G[7:0]				0x00	
0xA3			ADC_0	G[15:8]				0x00	
0xA4			ADC_	B[7:0]				0x00	
0xA5			ADC_	B[15:8]				0x00	
0xA6			ADC_	_C[7:0]				0x00	
0xA7	ADC_C[15:8]								
0xA8	ADC_IR[7:0]								
0xA9			ADC_I	R[15:8]				0x00	

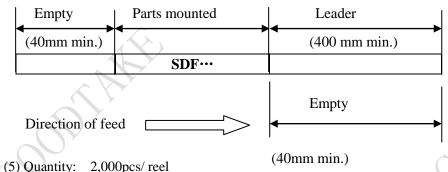
FIELD	DESCRIPTION	
DEV_ID	Device ID (0x24)	
REV_ID	Revision ID (0x0)	
ADC_R	RED data	
ADC_G	GREEN data	
ADC_B	BLUE data	
ADC_C	Clear data	
ADC_IR	IR data	

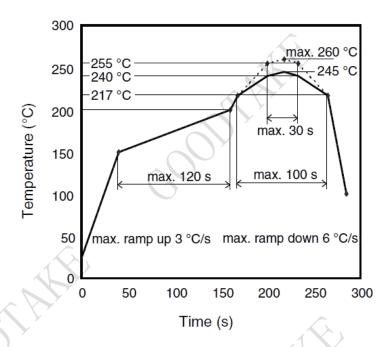

Package Outline Dimensions


Notes: All dimensions are in millimeters. Tolerance is ±0.2 unless otherwise noted.

TAPPING AND PACKING SPECIFICATIONS:


(1) Shape and dimensions of reels: unit in mm


(2) Dimensions of TR tape


(3) Dimensions of TT tape

(4) Configuration of tape

Reflow Soldering Profile

Antistatic Dry Pack

Opto devices in SMD package may be sensitive to moisture. Devices are taped & reeled, sealed in antistatic bag with silica gel desiccants.

Do not open the sealed moisture-proof bag before ready to use. If sealing is void, baking treatment may be required.

Storage

Shelf life – Devices should be stored in its original packing, in a controlled environment of temperature less than $40 \, \text{C}$ and relative humidity below 90%.

Suggested shelf life is12 months in its original packing.

Floor life -72 hours in controlled environment, T_{amb} <30 °C, RH <60%. Time between soldering and removing from moisture barrier bags must not exceed the time indicated in J-STD-020.

Moisture Sensitive Level classification: LEVEL 4

Drying (Baking Process)

If original packing is voided (such as faded silica gel or exceeded storage time), baking treatment should be performed with the following conditions: T bake = $40 + 5 \, \text{C}$, RH <5%, Time =192hours.